
Sam Bhagwat
Cofounder & CEO Mastra.ai

Sam
 Bhagw

at
Principles of Building A

I A
gents

Principles
of Building
AI Agents
2nd Edition

Understanding frontier tech is essential for building the
future. Sam has done it once with Gatsby, and now again
with Mastra - Paul Klein, CEO of Browserbase

Rapid advances in large language models (LLMs) have
made new kinds of AI applications, known as agents,
possible. Written by a veteran of web development,
Principles of Building AI Agents focuses on the substance
without hype or buzzwords. This book walks through:

• The key building blocks of agents:
providers, models, prompts, tools, memory

• How to break down complex tasks
with agentic workflows

• Giving agents access to knowledge bases
with RAG (retrieval-augmented generation)

If you’re trying to build agents or assistants into your
product, you need to read “Principles” ASAP - Peter
Kazanjy, Author of Founding Sales and CEO of Atrium

Sam Bhagwat is the founder of Mastra, an
open-source JavaScript agent framework,
and previously the co-founder of Gatsby, the
popular React framework.

Get a free digital copy
for your e-reader:
mastra.ai/book

PRINCIPLES OF BUILDING
AI AGENTS

SAM BHAGWAT

CONTENTS

Foreword ix
Sam Bhagwat

Introduction xiii

PART I
PROMPTING A LARGE

LANGUAGE MODEL (LLM)

1. A BRIEF HISTORY OF LLMS 3

2. CHOOSING A PROVIDER AND
MODEL 5

Hosted vs open-source 5

Model size: accuracy vs cost/latency 6

Context window size 6

Reasoning models 7

Providers and models (May 2025) 8

3. WRITING GREAT PROMPTS 9

Give the LLM more examples 9

A “seed crystal” approach 10

Use the system prompt 10

Weird formatting tricks 11

Example: a great prompt 11

PART II
BUILDING AN AGENT

4. AGENTS 101 15

Levels of Autonomy 15

Code Example 16

5. MODEL ROUTING AND
STRUCTURED OUTPUT 18

Structured output 19

6. TOOL CALLING 20

Designing your tools: the most
important step 22

Real-world example: Alana’s book
recommendation agent 22

7. AGENT MEMORY 25

Working memory 25

Hierarchical memory 26

Memory processors 28

`TokenLimiter` 28

`ToolCallFilter` 29

8. DYNAMIC AGENTS 31

What are Dynamic Agents? 31

Example: Creating a Dynamic Agent 32

Agent middleware 33

9. AGENT MIDDLEWARE 34

Guardrails 34

Agent authentication and
authorization 35

PART III
TOOLS & MCP

10. POPULAR THIRD-PARTY TOOLS 39

Web scraping & computer use 39

Third-party integrations 40

11. MODEL CONTEXT PROTOCOL
(MCP): CONNECTING AGENTS AND
TOOLS 42

What is MCP 42

MCP Primitives 43

The MCP Ecosystem 43

When to use MCP 44

Building an MCP Server and Client 45

What’s next for MCP 46

Conclusion 47

PART IV
GRAPH-BASED WORKFLOWS

12. WORKFLOWS 101 51

13. BRANCHING, CHAINING, MERGING,
CONDITIONS 52

Branching 52

Chaining 53

Merging 54

Conditions 55

Best Practices and Notes 56

14. SUSPEND AND RESUME 57

15. STREAMING UPDATES 61

How to streaming from within
functions 62

Why streaming matters 63

How to Build This 63

16. OBSERVABILITY AND TRACING 65

Observability 65

Tracing 66

Evals 68

Final notes on observability and
tracing 68

PART V
RETRIEVAL-AUGMENTED

GENERATION (RAG)

17. RAG 101 73

18. CHOOSING A VECTOR DATABASE 75

19. SETTING UP YOUR RAG PIPELINE 77

Chunking 77

Embedding 78

Upsert 78

Indexing 78

Querying 79

Reranking 79

Code Example 80

20. ALTERNATIVES TO RAG 83

Agentic RAG 83

Reasoning-Augmented Generation
(ReAG) 84

Full Context Loading 85

Conclusion 86

PART VI
MULTI-AGENT SYSTEMS

21. MULTI-AGENT 101 89

22. AGENT SUPERVISOR 92

23. CONTROL FLOW 93

24. WORKFLOWS AS TOOLS 94

25. COMBINING THE PATTERNS 95

26. MULTI-AGENT STANDARDS 97

How A2A works 98

A2A vs. MCP 98

PART VII
EVALS

27. EVALS 101 103

28. TEXTUAL EVALS 105

Accuracy and reliability 105

Understanding context 106

Output 107

Code Example 108

29. OTHER EVALS 109

Classification or Labeling Evals 109

Agent Tool Usage Evals 109

Prompt Engineering Evals 110

A/B testing 110

Human data review 111

PART VIII
DEVELOPMENT & DEPLOYMENT

30. LOCAL DEVELOPMENT 115

Building an agentic web frontend 115

Building an agent backend 116

31. DEPLOYMENT 118

Deployment challenges 118

Using a managed platform 119

PART IX
EVERYTHING ELSE

32. MULTIMODAL 123

Image Generation 124

Use Cases 125

Voice 126

Video 128

33. CODE GENERATION 129

34. WHAT’S NEXT 131

FOREWORD
SAM BHAGWAT

2nd edition

Two months is a short time to write a new edition of
a book, but life moves fast in AI.

This edition has new content on MCP, image
gen, voice, A2A, web browsing and computer use,
workflow streaming, code generation, agentic RAG,
and deployment.

AI engineering continues to get hotter and
hotter. Mastra’s weekly downloads have doubled
each of the last two months. At a typical SF AI
evening meetup, I give away a hundred copies of this
book.

Then two days ago, a popular developer news-
letter tweeted about this book and 3,500 people (!)
downloaded a digital copy (available for free at
mastra.ai/book if you are reading a paper copy).

x SAM BHAGWAT

So yes, 2025 is truly the year of agents. Thanks
for reading, and happy building!

Sam Bhagwat
San Francisco, CA
May 2025

1st edition

For the last three months, I’ve been holed up in an
apartment in San Francisco’s Dogpatch district with
my cofounders, Shane Thomas and Abhi Aiyer.

We’re building an open-source JavaScript frame-
work called Mastra to help people build their own
AI agents and assistants.

We’ve come to the right spot.
We’re in the Winter 2025 batch of YCombinator,

the most popular startup incubator in the world
(colloquially, YC W25).

Over half of the batch is building some sort of
“vertical agent” — AI application generating CAD
diagrams for aerospace engineers, Excel financials
for private equity, a customer support agent for iOS
apps.

These three months have come at some personal
sacrifice.

Shane has traveled from South Dakota with his
girlfriend Elizabeth, their three-year-old daughter

Foreword xi

and newborn son. I usually have 50-50 custody of my
seven-year-old son and five-year-old daughter, but
for these three months I’m down to every-other-
weekend. Abhi’s up from LA, where he bleeds
Lakers purple and gold.

Our backstory is that Shane, Abhi and I met
while building a popular open-source JavaScript
website framework called Gatsby. I was the co-
founder, and Shane and Abhi were key engineers.

While OpenAI and Anthropic’s models are
widely available, the secrets of building effective AI
applications are hidden in niche Twitter/X accounts,
in-person SF meetups, and founder groupchats.

But AI engineering is just a new domain, like
data engineering a few years ago, or DevOps before
that. It’s not impossibly complex. An engineer with a
framework like Mastra should be able to get up to
speed in a day or two. With the right tools, it’s easy to
build an agent as it is to build a website.

This book is intentionally a short read, even with
the code examples and diagrams we’ve included. It
should fit in your back pocket, or slide into your
purse. You should be able to use the code examples
and get something simple working in a day or two.

Sam Bhagwat
San Francisco, CA
March 2025

INTRODUCTION

We’ve structured this book into a few different
sections.

Prompting a Large Language Model (LLM)
provides some background on what LLMs are, how
to choose one, and how to talk to them.

Building an Agent introduces a key building
block of AI development. Agents are a layer on top
of LLMs: they can execute code, store and access
memory, and communicate with other agents. Chat-
bots are typically powered by agents.

Graph-based Workflows have emerged as a
useful technique for building with LLMs when
agents don’t deliver predictable enough output.

Retrieval-Augmented Generation (RAG),
covers a common pattern of LLM-driven search.
RAG helps you search through large corpuses of

xiv Introduction

(typically proprietary) information in order to send
the relevant bits to any particular LLM call.

Multi-agent systems cover the coordination
aspects of bringing agents into production. The
problems often involve a significant amount of orga-
nizational design!

Testing with Evals is important in checking
whether your application is delivering users suffi-
cient quality.

Local dev and serverless deployment are the
two places where your code needs to work. You need
to be able to iterate quickly on your machine, then
get code live on the Internet.

Note that we don’t talk about traditional
machine learning (ML) topics like reinforcement
learning, training models, and fine-tuning.

Today most AI applications only need to use
LLMs, rather than build them.

PART I

PROMPTING A LARGE
LANGUAGE MODEL (LLM)

A

1

A BRIEF HISTORY OF LLMS

I has been a perennial on-the-horizon
technology for over forty years.

There have been notable advances
over the 2000s and 2010s: chess engines, speech
recognition, self-driving cars.

The bulk of the progress on “generative AI” has
come since 2017, when eight researchers from
Google wrote a paper called “Attention is All You
Need”.

It described an architecture for generating text
where a “large language model” (LLM) was given a
set of “tokens” (words and punctuation) and was
focused on predicting the next “token”.

The next big step forward happened in
November 2022. A chat interface called ChatGPT,
produced by a well-funded startup called OpenAI,
went viral overnight.

4 SAM BHAGWAT

Today, there are several different providers of
LLMs, which provide both consumer chat interfaces
and developer APIs:

OpenAI. Founded in 2015 by eight people
including AI researcher Ilya Sutskever,
software engineer Greg Brockman, Sam
Altman (the head of YC), and Elon Musk.
Anthropic (Claude). Founded in 2020 by
Dario Amodei and a group of former
OpenAI researchers. Produces models
popular for code writing, as well as API-
driven tasks.
Google (Gemini). The core LLM is being
produced by the DeepMind team
acquired by Google in 2014.
Meta (Llama). The Facebook parent
company produces the Llama class of
open-source models. Considered the
leading US open-source AI group.
Others include Mistral (an open-source
French company), DeepSeek (an open-
source Chinese company).

O

2

CHOOSING A PROVIDER AND
MODEL

ne of the first choices you’ll need to
make building an AI application is
which model to build on. Here are some

considerations:

Hosted vs open-source

The first piece of advice we usually give people
when building AI applications is to start with a
hosted provider like OpenAI, Anthropic, or Google
Gemini.

Even if you think you will need to use open-
source, prototype with cloud APIs, or you’ll be
debugging infra issues instead of actually iterating
on your code. One way to do this without rewriting a
lot of code is to use a model routing library (more on
that later).

6 SAM BHAGWAT

Model size: accuracy vs cost/latency

Large language models work by multiplying arrays
and matrixes of numbers together. Each provider
has larger models, which are more expensive, accu-
rate, and slower, and smaller models, which are
faster, cheaper, and less accurate.

We typically recommend that people start with
more expensive models when prototyping — once
you get something working, you can tweak cost.

Context window size

One variable you may want to think about is the
“context window” of your model. How many tokens
can it take? Sometimes, especially for early prototyp-
ing, you may want to feed huge amounts of context
into a model to save the effort of selecting the rele-
vant context.

Right now, the longest context windows belong
to the Google Gemini Flash set of models; Gemini
Flash 1.5 Pro supports a 2 million token context
window (roughly 4,000 pages of text).

This allows some interesting applications; you
might imagine a support assistant with the entire
codebase in its context window.

Principles of Building AI Agents 7

Reasoning models

Another type of model is what’s called a “reasoning
model”, namely, that it does a lot of logic internally
before returning a response. It might take seconds,
or minutes, to give a response, and it will return a
response all at once (while streaming some
“thinking steps” along the way).

Reasoning models are getting a lot better and
they’re doing it fast. Now, they’re able to break down
complicated problems and actually “think” through
them in steps, almost like a human would.

What’s changed? New techniques like chain-of-
thought prompting let these models show their
work, step by step. Even better, newer methods like
“chain of draft” and “chain of preference optimiza-
tion” help them stay focused. Instead of rambling-
writing out every tiny detail or repeating them-
selves-they cut to the chase, only sharing the most
important steps and skipping the fluff. This means
you get clear, efficient reasoning, not a wall of text.

Bottom line: if you give these models enough
context and good examples, they can deliver surpris-
ingly smart, high-quality answers to tough ques-
tions. For example, if you want the model to help
diagnose a tricky medical case, giving it the patient’s
history, symptoms, and a few sample cases will lead
to much better results than just asking a vague ques-

8 SAM BHAGWAT

tion. The trick is still the same: the more you help
them up front, the better their reasoning gets.

You should think of reasoning models as “report
generators” — you need to give them lots of context
up front via many-shot prompting (more on that
later). If you do that, they can return high-quality
responses. If not, they will go off the rails.

Suggested reading: “o1 isn’t a chat model” by
Ben Hylak

Providers and models (May 2025)

O

3

WRITING GREAT PROMPTS

ne of the foundational skills in AI
engineering is writing good prompts.
LLMs will follow instructions, if you

know how to specify them well. Here’s a few tips and
techniques that will help:

Give the LLM more examples

There are three basic techniques to prompting.

Zero-shot: The “YOLO” approach. Ask
the question and hope for the best.
Single-shot: Ask a question, then provide
one example (w/ input + output) to guide
the model
Few-shot: Give multiple examples for
more precise control over the output.

10 SAM BHAGWAT

More examples = more guidance, but also takes
more time.

A “seed crystal” approach

If you’re not sure where to start, you can ask the
model to generate a prompt for you. E.g. “Generate a
prompt for requesting a picture of a dog playing
with a whale.” This gives you a solid v1 to refine. You
can also ask the model to suggest what could make
that prompt better.

Typically you should ask the same model that
you’ll be prompting: Claude is best at generating
prompts for Claude, gpt-4o for gpt-4o, etc.

We actually built a prompt CMS into Mastra’s
local development environment for this reason.

Use the system prompt

When accessing models via API, they usually have
the ability to set a system prompt, eg, give the model
characteristics that you want it to have. This will be
in addition to the specific “user prompt” that gets
passed in.

A fun example is to ask the model to answer the
same question as different personas, eg as Steve Jobs
vs as Bill Gates, or as Harry Potter vs as Draco
Malfoy.

This is good for helping you shape the tone with

Principles of Building AI Agents 11

which an agent or assistant responds, but usually
doesn’t improve accuracy.

Weird formatting tricks

AI models can be sensitive to formatting—use it to
your advantage:

CAPITALIZATION can add weight to
certain words.
XML-like structure can help models
follow instructions more precisely.
Claude & GPT-4 respond better to
structured prompts (e.g., task,
context, constraints).

Experiment and tweak—small changes in struc-
ture can make a huge difference! You can measure
with evals (more on that later).

Example: a great prompt

If you think your prompts are detailed, go through
and read some production prompts. They tend to be
very detailed. Here’s an example of (about one-third
of) a live production code-generation prompt (used
in a tool called bolt.new.)

12 SAM BHAGWAT

PART II

BUILDING AN AGENT

Y

4

AGENTS 101

ou can use direct LLM calls for one-shot
transformations: “given a video transcript,
write a draft description.”

For ongoing, complex interactions, you typically
need to build an agent on top. Think of agents as AI
employees rather than contractors: they main-
tain context, have specific roles, and can use tools to
accomplish tasks.

Levels of Autonomy

There are a lot of different definitions of agents and
agency floating around. We prefer to think of agency
as a spectrum. Like self-driving cars, there are
different levels of agent autonomy.

16 SAM BHAGWAT

At a low level, agents make binary choices
in a decision tree
At a medium level, agents have memory,
call tools, and retry failed tasks
At a high level, agents do planning, divide
tasks into subtasks, and manage their
task queue.

This book mostly focuses on agents on low-to-
medium levels of autonomy. Right now, there are
only a few examples of widely deployed, high-
autonomy agents.

Code Example

In Mastra, agents have persistent memory, consistent
model configurations, and can access a suite of tools
and workflows.

Here’s how to create a basic agent:

Principles of Building AI Agents 17

I

5

MODEL ROUTING AND
STRUCTURED OUTPUT

t’s useful to be able to quickly test and
experiment with different models without
needing to learn multiple provider SDKs. This

is known as model routing.
Here’s a JavaScript example with the AI SDK

library:

Principles of Building AI Agents 19

Structured output

When you use LLMs as part of an application, you
often want them to return data in JSON format
instead of unstructured text. Most models support
“structured output” to enable this.

Here’s an example of requesting a structured
response by providing a schema:

LLMs are very powerful for processing unstruc-
tured or semi-structured text. Consider passing in
the text of a resume and extracting a list of jobs,
employers, and date ranges, or passing in a medical
record and extracting a list of symptoms.

T

6

TOOL CALLING

ools are functions that agents can call to
perform specific tasks — whether
that's fetching weather data, querying

a database, or processing calculations.
The key to effective tool use is clear communica-

tion with the model about what each tool does and
when to use it.

Here's an example of creating and using a tool:

Principles of Building AI Agents 21

BEST PRACTICES:

Provide detailed descriptions in the tool
definition and system prompt
Use specific input/output schemas
Use semantic naming that matches the
tool's function (eg multiplyNumbers
instead of doStuff)

22 SAM BHAGWAT

Remember: The more clearly you communicate a
tool's purpose and usage to the model, the more
likely it is to use it correctly. You should describe
both what it does and when to call it.

Designing your tools: the most important step

WHEN YOU’RE CREATING an AI application, the most
important thing you should do is think carefully
about your tool design.

• What is the list of all the tools you’ll need?
• What will each of them do?
Write this out clearly before you start coding.

Real-world example: Alana’s book
recommendation agent

Alana Goyal, a Mastra investor, wanted to build
an agent that could give intelligent recommenda-
tions and analysis about a corpus of investor
book recommendations.

FIRST ATTEMPT:
She tried dropping all the books into the agent’s

knowledge window. This didn’t work well — the

Principles of Building AI Agents 23

agent couldn’t reason about the data in a structured
way.

BETTER APPROACH:
She broke the problem down into a set of specif-

ic tools, each handling a different aspect of the data:
• A tool for accessing the corpus of investors
• A tool for book recommendations
• A tool for books tagged by genre
Then, she added more tools for common

operations:
• Get all books by genre
• Get book recommendations by investor
• Sort people writing recommendations by

type (founders, investors, etc.)
If a human analyst were doing this project,

they’d follow a specific set of operations or queries.
The trick is to take those operations and

write them as tools or queries that your agent
can use.

RESULT:
With these tools in place, the agent could now

intelligently analyze the corpus of books, answer
nuanced questions, and provide useful recommen-
dations — just like a skilled human analyst.

• • •

24 SAM BHAGWAT

TAKEAWAY:
Think like an analyst. Break your problem into

clear, reusable operations. Write each as a tool.
If you do this, your agent will be much more ca-

pable, reliable, and useful.

M

7

AGENT MEMORY

emory is crucial for creating agents
that maintain meaningful, contextual
conversations over time. While LLMs

can process individual messages effectively, they
need help managing longer-term context and histor-
ical interactions.

Working memory

Working memory stores relevant, persistent, long-
term characteristics of users. A popular example of
how to see working memory is to ask ChatGPT what
it knows about you.

(For me, because my children often talk to it on
my devices, it will tell me that I’m a five year old girl
who loves squishmellows.)

26 SAM BHAGWAT

Hierarchical memory

Hierarchical memory is a fancy way of saying to use
recent messages along with relevant long-term
memories.

For example, let’s say we were having a conversa-
tion. A few minutes in, you asked me what I did last
weekend.

When you ask, I search in my memory for rele-
vant events (ie, from last weekend). Then I think
about the last few messages we’ve exchanged. Then,
I join those two things together in my “context
window” and I formulate a response to you.

Roughly speaking, that’s what a good agent
memory system looks like too. Let’s take a simple
case, and say we have an array of messages, a user
sends in a query, and we want to decide what to
include.

Here’s how we would do that in Mastra:

The lastMessages setting maintains a sliding

Principles of Building AI Agents 27

window of the most recent messages. This ensures
your agent always has access to the immediate
conversation context:

semanticRecall indicates that we’ll be using
RAG (more later) to search through past conver-
sations.

topK is the number of messages to retrieve.
messageRange is the range on each side of the

match to include.

Visualization of the memory retrieval process

Instead of overwhelming the model with the en-
tire conversation history, it selectively includes the
most pertinent past interactions.

By being selective about which context to
include, we prevent context window overflow while
still maintaining the most relevant information for
the current interaction.

28 SAM BHAGWAT

Note: As context windows continue to grow, devel-
opers often start by throwing everything in the
context window and setting up memory later!

Memory processors

SOMETIMES INCREASING your context window is not
the right solution. It’s counterintuitive but some-
times you want to deliberately prune your context
window or just control it.

Memory Processors allow you to modify the list
of messages retrieved from memory before they are
added to the agent’s context window and sent to the
LLM. This is useful for managing context size,
filtering content, and optimizing performance.

Mastra provides built-in processors.

`TokenLimiter`

This processor is used to prevent errors caused by
exceeding the LLM’s context window limit. It counts
the tokens in the retrieved memory messages and
removes the oldest messages until the total count is
below the specified limit.

Principles of Building AI Agents 29

`ToolCallFilter`

This processor removes tool calls from the memory
messages sent to the LLM. It saves tokens by
excluding potentially verbose tool interactions from
the context, which is useful if the details aren’t
needed for future interactions. It’s also useful if you
always want your agent to call a specific tool again
and not rely on previous tool results in memory.

30 SAM BHAGWAT

T

8

DYNAMIC AGENTS

he simplest way to configure an agent is to
pass a string for their system prompt, a
string for the provider and model name,

and an object/dictionary for a list of tools that they
are provided.

But that creates a challenge. What if you want to
change these things at runtime?

What are Dynamic Agents?

Choosing between dynamic and static agents is ulti-
mately a tradeoff between predictability and power.

A dynamic agent is an agent whose properties—
like instructions, model, and available tools—can be
determined at runtime, not just when the agent is
created.

This means your agent can change how it acts

32 SAM BHAGWAT

based on user input, environment, or any other
runtime context you provide.

Example: Creating a Dynamic Agent

Here’s an example of a dynamic support agent that
adjusts its behavior based on the user’s subscription
tier and language preferences:

Principles of Building AI Agents 33

Agent middleware

O

9

AGENT MIDDLEWARE

nce we see that it’s useful to specify the
system prompt, model, and tool options
at runtime, we start to think about the

other things we might want to do at runtime as well.

Guardrails

Guardrails are a general term for sanitizing the input
coming into your agent, or the output coming out.
Input sanitization tries broadly to guard against
“prompt injection” attacks.

These include model “jailbreaking” (“IGNORE
PREVIOUS INSTRUCTIONS AND…”), requests for
PII, and off-topic chats that could run up your LLM
bills.

Luckily, over the last couple years, the models

Principles of Building AI Agents 35

are getting better at guarding against malicious
input; the most memorable examples of prompt
injections are from a couple years ago.

Chris Bakke prompt injection attack, December 2023

Agent authentication and authorization

There are two layers of permissions to consider for
agents.

First, permissioning of which resources an agent
should have access to. Second, permissioning
around which users can access to an agent.

The first one we covered in the previous section;
the second we’ll discuss here. Middleware is the
typical place to put any agent authorization, because
it’s in the perimeter around the agent rather than
within the agent’s inner loop.

One thing to think about when building agents is

36 SAM BHAGWAT

that because they are more powerful than pre-LLM
data access patterns, you may need to spend more
time ensuring they are permissioned accurately.

Security through obscurity becomes less of a
viable option when users can ask an agent to retrieve
knowledge hidden in nooks and crannies.

PART III

TOOLS & MCP

A

10

POPULAR THIRD-PARTY TOOLS

gents are only as powerful as the tools you
give them. As a result, an ecosystem has
sprung up around popular types of tools.

Web scraping & computer use

One of the core tool use cases for agents is browser
use.

This includes web scraping, and automating
browser tasks, and extract information. You can use
built-in tools, connect to MCP servers, or integrate
with higher-level automation platforms.

There are a few different tools you could take to
add search to your agents:

Cloud-based web search APIs. There are a few
web search APIs that have become popular for

40 SAM BHAGWAT

LLMs to use, including Exa, Browserbase, and
Tavily.

Low-level open-source search tools. Microsoft’s
Playwright project is a pre-LLM-era project that
offers web search capabilities.

Agentic web search. Tools like Stagehand (in
JavaScript) and Browser Use (in Python, with MCP
servers for JS users) have plain English language
APIs that you can use to describe web scraping tasks.

When you provide browser tools to agents, you
often encounter similar challenges to traditional
browser automation.

Anti-bot detection. From browser fingerprinting
to WAFs to captchas, many websites protect against
automated traffic.

Fragile setups. Browser use setups sometimes
break if target websites change their layout or
modify some CSS.

These challenges are solvable — just budget a
bit of time for some munging and glue work!

Third-party integrations

The other thing that agents need is connections to
systems in which user data lives — including the
ability to both read and write from those systems.

Most agents — like most SaaS — need access to
a core set of general integrations (like email, calendar,
documents).

Principles of Building AI Agents 41

It would be difficult, for example, to build a
personal assistant agent without access to Gmail,
Google Calendar, or Microsoft Outlook.

In addition, depending on the domain you’re
building in, you will need additional integrations.

Your sales agent will need to integrate with
Salesforce and Gong. Your HR agent will need to
integrate with Rippling and Workday. Your code
agent will need to integrate with Github and Jira.

And so on.
Most people building agents want to avoid

spending months building bog-standard integra-
tions, and choose an “agentic iPaas” (integration-
platform-as-a-service).

The main divide is between more developer
friendly options with pro-plans in the tens and
hundreds of dollars per month, and more “enter-
prise” options with sometimes-deeper integrations
in the thousands of dollars per month.

In the former camp, we’ve seen folks be happy
with Composio, Pipedream, and Apify.

In the latter camp, there are a variety of special-
ized solutions; we don’t have enough data points to
offer good, general advice.

L

11

MODEL CONTEXT PROTOCOL (MCP):
CONNECTING AGENTS AND TOOLS

LMs, like humans, become much more
powerful when given tools. MCP provides
a standard way to give models access to

tools.

What is MCP

In November 2024, a small team at Anthropic
proposed MCP as a protocol to solve a real problem:
every AI provider and tool author had their own way
of defining and calling tools.

You can think about MCP like a USB-C port for
AI applications.

It’s an open protocol for connecting AI agents to
tools, models, and each other. Think of it as a
universal adapter: if your tool or agent “speaks”
MCP, it can plug into any other MCP-compatible

Principles of Building AI Agents 43

system—no matter who built it or what language it’s
written in.

But as any experienced engineer knows, the
power of any protocol is in the network of people
following it.

While initially well-received, it took until March
for MCP hit critical mass in March, after it gaining
popularity among prominent, vocal supporters like
Shopify’s CEO Tobi Lutke.

In April, OpenAI and Google Gemini
announced they would support MCP, making it the
default.

MCP Primitives

MCP has two basic primitives: servers and clients.
Servers wrap sets of MCP tools. They (and their

underlying tools) can be written in any language and
communicate with clients over HTTP.

Clients such as models or agents can query
servers to get the set of tools provided, then request
that the server execute a tool and return a response.

As such, MCP is as a standard for remote code
execution, like OpenAPI or RPC.

The MCP Ecosystem

As MCP was gaining traction, a bunch of folks
joined the fray.

44 SAM BHAGWAT

Vendors like Stripe began shipping MCP
servers for their API functionality.
Independent developers started making
MCP servers for functionality they
needed, like browser use or, and
publishing them on Github
Registries like Smithery, PulseMCP, and
mcp.run popped up to catalogue the
growing ecosystem of servers (as well as
validate the quality and safety of
providers).
Frameworks like Mastra started shipping
MCP server and client abstractions so
that individual developers didn’t have to
reimplement specs themselves.

When to use MCP

Agents, like SaaS, often need a number of basic inte-
grations with third-party services (calendar, chat,
email, web). If your roadmap has a lot of this kind of
feature, it’s worth looking at building an MCP client
that could access third-party features.

Conversely, if you’re building a tool that you
want other agents to use, you should consider ship-
ping an MCP server.

Principles of Building AI Agents 45

Building an MCP Server and Client

If you want to create MCP servers and give an agent
access to them, here’s how you can do that in Type-
script with Mastra:

46 SAM BHAGWAT

Conversely, if you want to create a client with
access to other MCP servers, here’s how you would
do that:

What’s next for MCP

MCP as a protocol is technically impressive, but the
ecosystem is still working to resolve a few
challenges:

First, discovery. There's no centralized or stan-
dardized way to find MCP tools. While various
registries have popped up, this has created its own
sort of fragmentation.

In April, we somewhat tongue-in-cheek built the

Principles of Building AI Agents 47

first MCP Registry Registry, but Anthropic is actu-
ally working on a meta-registry

Second, quality. There's no equivalent (yet) of
NPM’s package scoring or verification badges. That
said, the registries (which have rapidly raised
venture funding) are working hard on this.

Third, configuration. Each provider has its own
configuration schema and APIs. The MCP spec is
long, and clients don’t always implement them
completely.

Conclusion

You could easily spend a weekend debugging subtle
differences between the way that Cursor and Wind-
surf implemented their MCP clients (and we did).

There’s alpha in playing around with MCP, but
you probably don’t want to roll your own, at least not
right now. Look for a good framework or library in
your language.

PART IV

GRAPH-BASED
WORKFLOWS

W

12

WORKFLOWS 101

e've seen how individual agents can
work.

At every step, agents have flexi-
bility to call any tool (function).

Sometimes, this is too much freedom.
Graph-based workflows have emerged as a

useful technique for building with LLMs when
agents don’t deliver predictable enough output.

Sometimes, you’ve just gotta break a problem
down, define the decision tree, and have an agent (or
agents) make a few binary decisions instead of one
big decision.

A workflow primitive is helpful for defining
branching logic, parallel execution, checkpoints, and
adding tracing.

Let’s dive in.

S

13

BRANCHING, CHAINING, MERGING,
CONDITIONS

o, what’s the best way to build workflow
graphs?

Let’s walk through the basic operations,
and then we can get to best practices.

Branching

One use case for branching is to trigger multiple
LLM calls on the same input.

Let’s you have a long medical record, and need to
check for the presence of 12 different symptoms
(drowsiness, nausea, etc).

You could have one LLM call checks for 12 symp-
toms. But that’s a lot to ask.

Better to have 12 parallel LLM calls, each
checking for one symptom.

Principles of Building AI Agents 53

In Mastra, you create branches with the
.step() command. Here's a simple example:

Chaining

This is the simplest operation. Sometimes, you’ll
want to fetch data from a remote source before you
feed it into an LLM, or feed the results of one LLM
call into another.

In Mastra, you chain with the .then()
command. Here's a simple example:

54 SAM BHAGWAT

Each step in the chain waits for the previous step
to complete, and has access to previous step results
via context.

Merging

After branching paths diverge to handle different
aspects of a task, they often need to converge again
to combine their results:

Principles of Building AI Agents 55

Conditions

Sometimes your workflow needs to make decisions
based on intermediate results.

In workflow graphs, because multiple paths can
typically execute in parallel, in Mastra we define the
conditional path execution on the child step rather
than the parent step.

In this example, a processData step is execut-
ing, conditional on the fetchData step succeeding.

56 SAM BHAGWAT

Best Practices and Notes

It’s helpful to compose steps in such a way that the
input/output at each step is meaningful in some way,
since you’ll be able to see it in your tracing. (More
soon in the Tracing section).

Another is to decompose steps in such a way that
the LLM only has to do one thing at one time. This
usually means no more than one LLM call in any
step.

Many different special cases of workflow graphs,
like loops, retries, etc can be made by combining
these primitives.

S

14

SUSPEND AND RESUME

ometimes workflows need to pause
execution while waiting for a third-party
(like a human-in-the-loop) to provide input.

Because the third party can take arbitrarily long
to respond, you don’t want to keep a running
process.

Instead, you want to persist the state of the work-
flow, and have some function that you can call to
pick up where you left off.

Let’s diagram out a simple example with Mastra,
which has .suspend()and .resume() functions:

58 SAM BHAGWAT

To handle suspended workflows, you can watch
for status changes and resume execution when
ready:

Here’s a simple example of creating workflow
with suspend and resume in Mastra.

Steps are the building blocks of workflows.
Create a step using createStep:

Principles of Building AI Agents 59

Then create a workflow using create‐
Workflow:

60 SAM BHAGWAT

After defining a workflow, run it like so:

O

15

STREAMING UPDATES

ne of the keys to making LLM
applications feel fast and responsive is
showing users what’s happening while

the model is working. We’ve shipped some big
improvements here, and our new demo really shows
off what modern streaming can do.

Let’s revisit my ongoing (and still unsuccessful)
quest to plan a Hawaii trip.

Last year, I tried two reasoning models side by
side: OpenAI’s o1 pro (left tab) and Deep Research
(right tab).

The o1 pro just showed a spinning “reasoning”
box for three minutes-no feedback, just waiting.
Deep Research, on the other hand, immediately
asked me for details (number of people, budget,
dietary needs), then streamed back updates as it

62 SAM BHAGWAT

found restaurants and attractions. It felt way snap-
pier and kept me in the loop the whole time.

Left: o1 pro (less good). Right: Deep Research (more good)

How to streaming from within functions

Here’s the catch: when you’re building LLM agents,
you’re usually streaming in the middle of a function
that expects a certain return type. Sometimes, you
have to wait for the whole LLM output before the
function can return a result to the user. But what if
the function takes ages? This is where things get
tricky. Ideally, you want to stream step-by-step
progress to the user as soon as you have it, not just
dump everything at the end.

A lot of folks are hacking around this. For exam-
ple, Simon at Assistant UI set up his app to write
every token from OpenAI directly to the database as
it streamed in, using ElectricSQL to instantly sync

Principles of Building AI Agents 63

those updates to the frontend. This creates a kind of
“escape hatch”-even if the function isn’t done, the
user sees live progress.

Why streaming matters

The most common thing to stream is the LLM’s own
output (showing tokens as they’re generated.) But
you can also stream updates from each step in a
multi-step workflow or agent pipeline, like when an
agent is searching, planning, and summarizing in
sequence.

This keeps users engaged and reassured that
things are moving along, even if the backend is still
crunching.

How to Build This

• Stream as much as you can: Whether it’s tokens,
workflow steps, or custom data, get it to the user
ASAP.

• Use reactive tools: Libraries like ElectricSQL
or frameworks like Turbo Streams make it easier to
sync backend updates directly to the UI.

• Escape hatches: If your function is stuck wait-
ing, find ways to push partial results or progress
updates to the frontend.

Bottom line: Streaming isn’t just a nice-to-have-
it’s critical for good UX in LLM apps. Users want to

64 SAM BHAGWAT

see progress, not just a blank screen. If you nail this,
your agents will feel faster and more reliable, even if
the backend is still working hard.

Now, if only streaming could help me actually
get to Hawaii…

B

16

OBSERVABILITY AND TRACING

ecause LLMs are non-deterministic, the
question isn’t whether your application will
go off the rails.

It’s when and how much.
Teams that have shipped agents into production

typically talk about how important it is to look at
production data for every step, of every run, of each
of their workflows.

Agent frameworks like Mastra that let you write
your code as structured workflow graphs will also
emit telemetry that enables this.

Observability

Observability is a word that gets a lot of airplay, but
since its meaning has been largely diluted and

66 SAM BHAGWAT

generalized by self-interested vendors let’s go to the
root.

The initial term was popularized by Honey-
comb’s Charity Majors in the late 2010s to describe
the quality of being able to visualize application
traces.

Tracing

To debug a function, it would be really nice to be able
to see the input and output of every function it
called. And the input and output of every function
those functions called. (And so on, and so on, turtles
all the way down.)

This kind of telemetry is called a trace, which is
made up of a tree of spans. (Think about a nested
HTML document, or a flame chart.)

The standard format for traces is known as
OpenTelemetry, or OTel for short. When monitoring
vendors began supporting tracing, each had a
different spec — there was no portability. Lightstep’s
Ben Sigelman helped create the common Otel stan-
dard, and larger vendors like Datadog (under duress)
began to support Otel.

There’s a large number of observability vendors,
both older backend and AI-specific ones, but the UI
patterns converge:

Principles of Building AI Agents 67

A sample tracing screen

What this sort of UI screen gives you is:

A trace view. This shows how long each
step in the pipeline took (e.g.,
parse_input, process_request, api_call,
etc.)
Input/output inspection. Seeing the
exact “Input” and “Output” in JSON is
helpful for debugging data flowing into
and out of Lams
Call metadata. Showing status, start/end
times, latency, etc.) provides key context
around each run, helping humans
scanning for anomalies.

68 SAM BHAGWAT

Evals

It’s also nice to be able to see your evals (more on
evals later) in a cloud environment.

For each of their evals, people want to see a side-
by-side comparison of what how the agent
responded versus what was expected.

They want to see the overall score on each PR (to
ensure there aren’t regressions), and the score over
time, and to filter by tags, run date, and so on.

Eval UIs tends to look like this:

A sample evaluation screen

Final notes on observability and tracing

You’ll need a cloud tool to view this sort
of data for your production app.

Principles of Building AI Agents 69

It’s also nice to be able to look at this data
locally when you’re developing (Mastra
does this). More on this in the local
development section.
There is a common standard called
OpenTelemetry, or OTel for short, and we
strongly recommend emitting in that
format.

PART V

RETRIEVAL-AUGMENTED
GENERATION (RAG)

R

17

RAG 101

AG lets agents ingest user data and
synthesize it with their global knowledge
base to give users high quality responses.

Here’s how it works.
Chunking: You start by taking a document

(although we can use other kinds of sources as well)
and chunking it. We want to split the document into
bite-sized pieces for search.

Embedding: After chunking, you’ll want to
embed your data – transform it into a vector, or an
array of 1536 values between 0 and 1, representing
the meaning of the text.

We do this with LLMs, because they make the
embeddings much more accurate; OpenAI has an
API for this, there are other providers like Voyage or
Cohere.

You need to use a vector DB which can store

74 SAM BHAGWAT

these vectors and do the math to search on them.
You can use pgvector, which comes out of the box
with Postgres.

Indexing: Once you pick a vector DB, you need
to set up an index to store your document chunks,
represented as vector embeddings.

Querying: Okay, after that setup, you can now
query the database!

Under the hood, you’ll be running an algorithm
that compares your query string to all the chunks in
the database and returning the most similar ones.
The most popular algorithm is called “cosine
similarity”.

The implementation is similar to a geospatial
query searching latitude/longitude, except the
search goes over 1536 dimensions instead of two.

You can use other algorithms as well.
Reranking: Optionally, after querying, you can

use a reranker. Reranking is a more computationally
expensive way of searching the dataset. You can run
it over your results to improve the ordering (but it
would take too long to run it over the entire
database).

Synthesis: finally, you pass your results as
context into an LLM, along with any other context
you way, and it can synthesize an answer to the user.

O

18

CHOOSING A VECTOR DATABASE

ne of the biggest questions people
having around RAG is how they should
think of a vector DB.

There are multiple form factors of vector
databases:

1. A feature on top of open-source
databases (pgvector on top of Postgres,
the libsql vector store)

2. Standalone open-source (Chroma)
3. Standalone hosted cloud service

(Pinecone).
4. Hosted by an existing cloud provider

(Cloudflare Vectorize, DataStax Astra).

Our take is that unless your use-case is excep-

76 SAM BHAGWAT

tionally specialized, the vector DB feature set is
mostly commoditized.

Back in 2023, VC funding drove a huge explosion
in vector DB companies, which while exciting for
the space as a whole, created a whole set of
competing solutions with little differentiation.

Today, in practice teams report that the most
important thing is to prevent infra sprawl (yet
another service to maintain). Our recommendation:

If you’re already using Postgres for your
app backend, pgvector is a great choice.
If you’re spinning up a new project,
Pinecone is a default choice with a
nice UI.
If your cloud provider has a managed
vector DB service, use that.

C

19

SETTING UP YOUR RAG PIPELINE

Chunking

hunking is the process of breaking down
large documents into smaller, manageable
pieces for processing.

The key thing you’ll need to choose here is a
strategy and an overlap window. Good chunking
balances context preservation with retrieval gran-
ularity.

Chunking strategies including recursive, charac-
ter-based, token-aware, and format-specific (Mark-
down, HTML, JSON, LaTeX) splitting. Mastra
supports all of them.

78 SAM BHAGWAT

Embedding

Embeddings are numerical representations of text
that capture semantic meaning. These vectors allow
us to perform similarity searches. Mastra supports
multiple embedding providers like OpenAI and
Cohere, with the ability to generate embeddings for
both individual chunks and arrays of text.

Upsert

Upsert operations allow you to insert or update vec-
tors and their associated metadata in your vector
store. This operation is essential for maintaining
your knowledge base, combining both the embed-
ding vectors and any additional metadata that might
be useful for retrieval.

Indexing

An index is a data structure that optimizes vector
similarity search. When creating an index, you spec-
ify parameters like dimension size (matching your
embedding model) and similarity metric (cosine,
euclidean, dot product). This is a one-time setup
step for each collection of vectors.

Principles of Building AI Agents 79

Querying

Querying involves converting user input into an
embedding and finding similar vectors in your
vector store. The basic query returns the most
semantically similar chunks to your input, typically
with a similarity score. Under the hood, this is a
bunch of matrix multiplication to find the closest
point in *n-*dimensional space (think about a geo
search with lat/lng, except in 1536 dimensions
instead).

The most common algorithm that does this is
called cosine similarity (although you can use others
instead).

Hybrid Queries with Metadata. Hybrid
queries combine vector similarity search
with traditional metadata filtering. This
allows you to narrow down results based on
both semantic similarity and structured
metadata fields like dates, categories, or
custom attributes.

Reranking

Reranking is a post-processing step that improves
result relevance by applying more sophisticated
scoring methods. It considers factors like semantic

80 SAM BHAGWAT

relevance, vector similarity, and position bias to
reorder results for better accuracy.

It’s a more computationally intense process, so
you typically don’t want to run it over your entire
corpus for latency reasons — you’ll typically just run
it on a code example.

Code Example

Here’s some code using Mastra to set up a RAG pipe-
line. Mastra includes a consistent interface for
creating indexes, upserting embeddings, and query-
ing, while offering their own unique features and
optimizations, so while this example uses Pinecone,
you could easily use another DB instead.

Principles of Building AI Agents 81

Note: There are advanced ways of doing
RAG: using LLMs to generate metadata,
using LLMs to refine search queries; using

82 SAM BHAGWAT

graph databases to model complex relation-
ships. These may be useful for you, but start
by setting up a working pipeline and
tweaking the normal parameters — embed-
ding models, rerankers, chunking algorithms
— first.

G

20

ALTERNATIVES TO RAG

reat, know you know how RAG works.
But does it matter? Or, put like a Twitter
edgelord, is RAG dead?

Not yet, we think. But there are some simpler
approaches you should probably reach for first
before setting up a RAG pipeline.

Agentic RAG

Instead of searching through documents, you can
give your agent a set of tools to help it reason about a
domain. For example, a financial advisor agent
might have access to market data APIs, calculators,
and portfolio analysis tools. The agent can then use
these tools to generate more accurate and grounded
responses.

The advantage of agentic RAG is that it can be

84 SAM BHAGWAT

Code available at https://github.com/alanagoyal/mcp-server

more precise than RAG - rather than searching for
relevant text, the agent can compute exact answers.
The downside is that you need to build and main-
tain the tools, and the agent needs to know how to
use them effectively.

One of our investors built a variety of tools to
query her website in various ways, and then bundled
them into a MCP server she could give to the Wind-
surf agent.

She then recorded a demo where she asked the
agent about her favorite restaurants (it recom-
mended Flour + Water in San Francisco) and her
favorite portfolio companies (it demurred, saying
she likes all of her companies equally). ∗

Reasoning-Augmented Generation (ReAG)

ReAG is a loose grouping of thought that focuses on
improving using models to enrich text chunks.

ReAG advocates say you should think about
what you would do with 10x your LLM budget to
improve your RAG pipeline quality — then go do it.
They point out that pre-processing is asynchronous,
so it doesn’t need to be fast.

Some thought experiments to consider if you’re
thinking about ReAG:

∗

Principles of Building AI Agents 85

when you’re annotating, send a request to
a model 10x at high temperature to see if
the responses have consensus.
send the input through an LLM before
retrieving data
extract rich semantic information,
including references to other sections,
entity names, and any structured
relationships

Full Context Loading

With newer models supporting larger context
windows (Gemini has 2m tokens), sometimes the
simplest approach is to just load all the relevant
content directly into the context. This works particu-
larly well with models optimized for reasoning over
long contexts, like Claude or GPT-4.

The advantages are simplicity and reliability - no
need to worry about chunking or retrieval, and the
model can see all the context at once. The main limi-
tations are:

Cost (you pay for the full context
window)
Size constraints (even large windows have
limits)
Potential for distraction (the model might
focus on irrelevant parts)

86 SAM BHAGWAT

Conclusion

We’re engineers. And engineers can over-engineer
things.

With RAG, you should fight that tendency. Start
simple, check quality, get complex.

Step one, you should be throwing your entire
corpus into Gemini’s context window. Step two, write
a bunch of functions to access your dataset, bundle
them in an MCP server, and give them to the Cursor
or Windsurf agent.

If neither step one or step two give you good
enough quality, then consider building a RAG
pipeline.

PART VI

MULTI-AGENT SYSTEMS

T

21

MULTI-AGENT 101

hink about a multi-agent systems like a
specialized team, like marketing or engi-
neering, at a company. Different AI agents

work together, each with their own specialized role,
to ultimately accomplish more complex tasks.

Interestingly, if you’ve used a code-generation
tool like Replit agent that’s deployed in production,
you’ve actually already been using a multi-agent
system.

One agent works with you to plan / architect
your code. After you’ve worked with the agent to
plan it out, you work with a “code manager” agent
that passes instructions to a code writer, then
executes the resulting code in a sandbox and passes
any errors back to the code writer.

Each of these agents has different memories,

90 SAM BHAGWAT

different system prompts, and access to different
tools.

We often joke that designing a multi-agent
system involves a lot of skills used in organizational
design. You try to group related tasks into a job
description where you could plausibly recruit some-
one. You might give creative or generative tasks to
one person and review or analytical tasks to another.

You want to think about network dynamics. Is it
better for three specialized agents to gossip among
themselves until consensus is reached? Or feed their
output back to a manager agent who can make a
decision?

One advantage of multi-agent systems is

Principles of Building AI Agents 91

breaking down complex tasks into manageable
pieces. And of course, designs are fractal. A hier-
archy is just a supervisor of supervisors. But start
with the simplest version first.

Let’s break down some of the patterns.

A

22

AGENT SUPERVISOR

gent supervisors are specialized agents
that coordinate and manage other agents.
The most straightforward way to do this is

to pass in the other agents wrapped as tools.
For example, in a content creation system, a

publisher agent might supervise both a copywriter
and an editor:

W

23

CONTROL FLOW

hen building complex AI applications,
you need a structured way to manage
how agents think and work through

tasks. Just as a project manager wouldn't start coding
without a plan, agents should establish an approach
before diving into execution.

Just like how it’s common practice for PMs to
spec out features, get stakeholder approval, and only
then commission engineering work, you shouldn’t
expect to work with agents without first aligning on
what the desired work is.

We recommend engaging with your agents on
architectural details first — and perhaps adding a
few checkpoints for human feedback in their
workflows.

H

24

WORKFLOWS AS TOOLS

opefully, by now, you’re starting to see
that all multi-agent architecture comes
down to which primitive you’re using and

how you’re arranging them.
It’s particularly important to remember this

framing when trying to build more complex tasks
into agents.

Let’s say you want your agent(s) to accomplish 3
separate tasks. You can’t do this easily in a single
LLM call. But you can turn each of those tasks into
individual workflows. There’s more certainty in
doing it this way because you can stipulate a work-
flow’s order of steps and provide more structure.

Each of these workflows can then be passed
along as tools to the agent(s).

I

25

COMBINING THE PATTERNS

f you’ve played around with code writing tools
like Repl.it and Lovable.dev, you’ll notice that
they have planning agents and a code writing

agent. (And in fact the code writing agent is two
different agents, a reviewer and writer that work
together.)

It’s critical for these tools to have planning agents
if they’re to create any good deliverables for you
at all.

The planning agent proposes an architecture for
the app you desire. It asks you, “how does that
sound?”

You get to give it feedback until you and the
agent are aligned enough on the plan such that it
can pass it along to the code writing agents.

In this example, agents embody different steps in a

96 SAM BHAGWAT

workflow. They are responsible either for planning,
coding, or review and each work in a specific order.

In the previous example, you’ll notice that work-
flows are steps (tools) for agents. These are inverse
examples to one another, which brings us, again, to
an important takeaway.

All the primitives can be rearranged in the way
you want, custom to the control flow you want.

W

26

MULTI-AGENT STANDARDS

hile it hasn’t enjoyed quite the rapid
liftoff of Anthropic’s MCP, the other
protocol that’s gained speed in spring

2025 is Google’s A2A.
While all the multi-agent material we’ve covered

so far relates to how you’d orchestrate multiple
agents assuming you controlled all of them, A2A is a
protocol for communicating with “untrusted”
agents.

Like MCP, A2A solves an n x n problem. If there
are n different agents, each of which uses a different
framework, you would have to write n x m different
integrations to make them work together.

98 SAM BHAGWAT

How A2A works

A2A relies on a JSON metadata file hosted at
/.well-known/agent.json that describes
what the agent can do, its endpoint URL, and
authentication requirements.

Once authorization happens, and assuming the
agents have implemented the A2A client and server
protocols, they can send tasks to each other with a
queueing system.

Tasks have unique IDs and progress through
states like submitted, working, input-required,
completed, failed, or canceled. A2A supports both
synchronous request-response patterns and
streaming for longer-running tasks using Server-
Sent Events.

Communication happens over HTTP and JSON-
RPC 2.0, with messages containing parts (text, files,
or structured data). Agents can generate artifacts as
outputs and send real-time updates via server-side
events. Communication uses standard web auth —
OAuth, API keys, HTTP codes, and so on.

A2A vs. MCP

A2A is younger than MCP, and while Microsoft
supports A2A, neither OpenAI nor Anthropic has
jumped on board. It’s possible they view MCP as
competitive to A2A. Time will tell.

Principles of Building AI Agents 99

Either way, expect one or multiple agent interop-
erability protocol from the big players to emerge as
the default standard.

PART VII

EVALS

W

27

EVALS 101

hile traditional software tests have
clear pass/fail conditions, AI outputs
are non-deterministic — they can vary

with the same input. Evals help bridge this gap by
providing quantifiable metrics for measuring agent
quality.

Instead of binary pass/fail results, evals
return scores between 0 and 1.

Think about evals sort of like including, say,
performance testing in your CI pipeline. There’s
going to be some randomness in each result, but on
the whole and over time there should be a correla-
tion between application performance and test
results.

When writing evals, it’s important to think about
what exactly you want to test.

104 SAM BHAGWAT

There are different kinds of evals just like there
are different kinds of tests.

Unit tests are easy to write and run but might not
capture the behavior that matters; end-to-end tests
might capture the right behavior but they might be
more flaky.

Similarly, if you’re building a RAG pipeline, or a
structured workflow, you may want to test each step
along the way, and then after that test the behavior
of the system as a whole.

T

28

TEXTUAL EVALS

extual evals can feel a bit like a grad
student TA grading your homework with a
rubric. They are going to be a bit pedantic,

but they usually have a point.

Accuracy and reliability

You can evaluate how correct, truthful, and complete
your agent’s answers are. For example:

Hallucination. Do responses contain
facts or claims not present in the
provided context? This is especially
important for RAG applications.
Faithfulness. Do responses accurately
represent provided context?

106 SAM BHAGWAT

Content similarity. Do responses
maintain consistent information across
different phrasings?
Completeness. Do response includes all
necessary information from the input or
context?
Answer relevancy. How well do
responses address the original query?

Understanding context

You can evaluate how well your agent is using
provided context, eg retrieved excerpts from sources,
facts and statistics, and user details added to context.
For example:

Context position. Where does context
appears in responses? (Usually the
correct position for context is at the top.)
Context precision. Are context chunks
grouped logically? Does the response
maintains the original meaning?
Context relevancy. Does the response
uses the most appropriate pieces of
context?
Contextual recall. Does the response
completely “recall” context provided?

Principles of Building AI Agents 107

Output

You can evaluate how well the model delivers its
final answer in line with requirements around
format, style, clarity, and alignment.

Tone consistency. Do responses
maintain the correct level of formality,
technical complexity, emotional tone, and
style?
Prompt Alignment. Do responses follow
explicit instructions like length
restrictions, required elements, and
specific formatting requirements?
Summarization Quality. Do responses
condense information accurately?
Consider eg information retention,
factual accuracy, and conciseness?
Keyword Coverage. Does a response
include technical terms and terminology
use?

Other output eval metrics like toxicity & bias
detection are important but largely baked
into leading models.

108 SAM BHAGWAT

Code Example

Here’s an example with three different evaluation
metrics that automatically check a content writing
agent’s output for accuracy, faithfulness to source
material, and potential hallucinations:

T

29

OTHER EVALS

here are a few other types of evals as well.

Classification or Labeling Evals

Classification or labeling evals help determine how
accurately a model tags or categorizes data based on
predefined categories (e.g., sentiment, topics, spam
vs. not spam).

This can include broad labeling tasks (like recog-
nizing document intent) or fine-grained tasks (like
identifying specific entities aka entity extraction).

Agent Tool Usage Evals

Tool usage or agent evals measure how effectively a
model or agent calls external tools or APIs to solve
problems.

110 SAM BHAGWAT

For example, like you would write
expect(Fn).toBeCalled in the JavaScript
testing framework Jest, you would want similar func-
tions for agent tool use.

Prompt Engineering Evals

Prompt engineering evals explore how different
instructions, formats, or phrasings of user queries
impact an agent’s performance.

They look at both the sensitivity of the agent to
prompt variations (whether small changes produce
large differences in results) and the robustness to
adversarial or ambiguous inputs.

All things “prompt injection” fall in this category.

A/B testing

After you launch, depending on your traffic, it’s quite
plausible to run live experiments with real users to
compare two versions of your system.

In fact, leaders of larger consumer and developer
tools AI companies, like Perplexity and Replit, joke
that they rely more on A/B testing of user metrics
than evals per se. They have enough traffic that
degradation in agent quality will be quickly visible.

Principles of Building AI Agents 111

Human data review

In addition to automated tests, high-performing AI
teams regularly review production data. Typically,
the easiest way to do this is to view traces which
capture the input and output of each step in the
pipeline. We discussed this earlier in the workflows
and deployment section.

Many correctness aspects (e.g., subtle domain
knowledge, or an unusual user request) can’t be fully
captured by rigid assertions, but human eyes catch
these nuances.

PART VIII

DEVELOPMENT &
DEPLOYMENT

A

30

LOCAL DEVELOPMENT

gent development typically falls into two
different categories: building the frontend
and the backend.

Building an agentic web frontend

Web-based agent frontends tend to share a few char-
acteristics: they’re built around a chat interface,
stream to a backend, autoscroll, display tool calls.

We discussed the importance of streaming in an
earlier chapter. Agentic interfaces tend using a
variety of different transport options like request/re-
sponse, server-sent events, webhooks and web
sockets, all to feed the sense of real-time inter-
activity.

There are a few frameworks we see speeding up
development here, especially during the prototype

116 SAM BHAGWAT

phase: Assistant UI, Copilot Kit, and Vercel’s AI
SDK UI.

(And many agents are based on other platforms
like WhatsApp, Slack, or email and don’t have a web
frontend!)

It’s important to note that while agentic fron-
tends can be powerful, the full agent logic generally
can’t live client-side in the browser for security
reasons — it would leak your API keys to LLM
providers.

Building an agent backend

So it’s the backend where we typically see most of
the complexity.

When developing AI applications, it’s important
to see what your agents are doing, make sure your
tools work, and be able to quickly iterate on your
prompts.

Some things that we’ve seen be helpful for a
local agent development:

Agent Chat Interface: Test conversations
with your agents in the browser, seeing
how they respond to different inputs and
use their configured tools.
Workflow Visualizer: Seeing step-by-
step workflow execution and being able
to suspend/resume/replay

Principles of Building AI Agents 117

Agent/workflow endpoints: Being able
to curl agents and workflows on localhost
(this also enables using eg Postman)
Tool Playground: Testing any tools and
being able to verify inputs / outputs
without needing to invoke them through
an agent.
Tracing & Evals: See inputs and outputs
of each step of agent and workflow
execution, as well as eval metrics as you
iterate on code.

Here’s a screenshot from Mastra’s local dev envi-
ronment:

I

31

DEPLOYMENT

n May 2025, we’re still generally in the Heroku
era of agent deployment.

Most teams are putting their agents into
some sort of web server, then putting that server into
a Docker image and deploying it onto a platform
that will scale that.

While web applications are well-understood
enough that we’ve been able to make progress on
serverless deployment paradigms (Vercel, Render,
AWS Lambda, etc), agents are not yet at that point.

Deployment challenges

Relative to typical web request/response cycles,
agent workloads are somewhat more complicated.

They are often long-running, similar to the
workloads on durable execution engines like

Principles of Building AI Agents 119

Temporal and Inngest. But they are still tied to a
specific user request.

Run on serverless platforms, the long-running
processes can cause function timeouts. In addition,
bundle sizes can be too large, and some serverless
hosts don’t support the full Node.js runtime.

Using a managed platform

The agent teams sleeping the soundest at night are
the ones we see who figure out how to run their
agents using auto-scaling managed services.

Serverless providers (generally) aren’t there yet
— long-running processes can cause function time-
outs, and bundle sizes are a problem.

Teams using container services like AWS EC2,
Digital Ocean, or equivalent seem to be all right as
long as they have a B2B use case that won’t have
sudden usage spikes.

(And of course, at Mastra, we have a beta cloud
service with autoscaling)

PART IX

EVERYTHING ELSE

O

32

MULTIMODAL

ne way to think about multimodality
(images, video, voice) in AI is to map
their dates of origin on various

platforms.
Consider the Internet: it supported text from its

origin in the 1970s, but images and video weren’t
supported until the web browser (1992), and voice
not until 1995.

Voice and video didn’t become popular until
YouTube (2002) and Skype (2003), with greater band-
width and connection speeds.

Or think about social networks: all the early
ones, like MySpace (2002), Facebook (2004), and
Twitter (2008), were primarily text-based.

Image-based social media didn’t become popular
until Instagram (2010) and Snapchat (2013), and
video-based social media until TikTok (2017).

124 SAM BHAGWAT

In AI, then, it’s little wonder that multi-modal
use-cases are a bit younger and less mature. Like on
earlier platforms, they’re trickier to get right, and
more computationally complex.

Image Generation

March 2025 brought the invention of Ghibli-core —
think soft colors, dreamy backgrounds, and those
iconic wide-eyed characters.

People had been playing with Midjourney,
Stable Diffusion, and others for a while. But March
was a step forward in consumer-grade image-gener-
ation, with to transpose photos into specific styles.

People uploaded selfies or old photos, added a
prompt, and instantly got back an anime version
that looked straight out of “Spirited Away.”

Principles of Building AI Agents 125

The Mastra cofounders (Shane, Abhi and Sam) at a basketball
game

This wasn’t just a niche thing; the Ghibli trend
took over social feeds everywhere. The official
(Trump) White House account joined the fray by
(controversially) tweeted out a Ghibli-fied picture of
a detained immigrant.

More broadly, the “Ghibli” moment showed
vitality for the digital art use case — image gen for
what was something between a storyboard, a char-
acter sketch, and environment concepts.

Use Cases

In terms of people using image gen for products,
there are a few use-cases.

In marketing and e-commerce, product mockups

126 SAM BHAGWAT

on varied backgrounds and rapid ad creative genera-
tion without photoshoots and in various form
factors. “Try-on” image models allow people to swap
out the human model but keep the featured clothing
item.

The third use-case for image gen has been in
video game and film production. Image gen has
allowed for asset prototyping, including portraits,
textures, props, as well as scene layout planning via
rough “sketch to render” flows.

Put in web development terms, this gives the
fidelity of a full design with the effort/skill of a
wireframe.

Last, there are more NSFW use-cases. These
don’t tend to be venture-fundable, but at least
according to the Silicon Valley gossip mills, quite a
few of the more risqué use-cases print money — if
you can find a payment processor that will take your
business.

Voice

The key modalities in voice are speech-to-text (STT),
text-to-speech (TTS), and speech-to-speech, also
known as realtime voice.

What users want in an agent voice product is
something that can understand their tone, and
respond immediately.

In order to do that, you could train a model that

Principles of Building AI Agents 127

specifically takes voice tokens as input, and responds
with voice tokens as output. That’s known as “real-
time voice”, but it’s proved challenging.

For one thing, it’s difficult to train such models;
the information density of audio is only 1/1000 of
text, so these models take significantly more input
data to train and cost more to serve.

Second, these models still struggle with turn-
taking, known in the industry as “voice activity
detection”. When talking, humans interrupt each
other constantly using both visual and emotional
cues.

But voice models don’t have these cues, and have
to deal with both computational and network
latency. When they interrupt too early, they cut
people off; when they interrupt too late, they sound
robotic.

While these products make great demos, there
are not too many companies using realtime voice in
production.

What they use instead is speech-to-text (STT)
and text-to-speech (TTS) pipeline. They use one
model to translate input voice to text, another model
to generate response text, and then translate the
response text into an audio response.

Here’s an example of listening; you could follow
this up with agent.speak() to reply.

128 SAM BHAGWAT

Video

AI video generation products, while exciting, have
not yet crossed from machine learning into AI engi-
neering.

Consumer models have not yet had their Studio
Ghibli moment where they can accurately represent
characters in input and replay them in alternate
settings.

As a result, products tend require a lot of special-
ized knowledge to build, and consume GPU cycles
on runtime generating avatars from user input that
can then be replayed in new settings and scenarios.

W

33

CODE GENERATION

ith the takeoff of companies like
bolt.new and Lovable, as well as
coding agent releases in the span of a

week from OpenAI, Microsoft, and Google, have
come a surge of people interested in building their
own coding agents.

Giving your agent code generation tools unlocks
powerful workflows, but also comes with important
safety and quality considerations.

So, consider the following:

Feedback Loops: Agents can write code,
run it, and analyze the results. For
example, if the code throws an error, the
agent can read the error message and try
again—enabling iterative improvement.

130 SAM BHAGWAT

Sandboxing: Always run generated code
in a sandboxed environment. This
prevents the agent from accidentally (or
maliciously) running dangerous
commands on your machine (like `rm -rf
/`).
Code Analysis: You can give agents access
to linters, static type checkers, and other
analysis tools. This provides ground truth
feedback and helps agents write higher-
quality code.

If you’re building a code agent, you should take a
deep look at the tools and platforms that specialize
specifically in this use case.

T

34

WHAT’S NEXT

he agent space is moving incredibly
quickly.

We don’t have a crystal ball, but from
our vantage point as a prominent agent framework,
here’s what we see:

Reasoning models will continue to get
better. Agents like Windsurf and Cursor
can plug in Claude 3.7, o4-mini-high, and
Claude 4, and improve performance
significantly. But what do agents built for
reasoning models look like? We’re not
sure.
We’ll make progress on agent learning.
Agents emit traces, but right now the
feedback loop to improve their

132 SAM BHAGWAT

performance runs through their human
programmers. Different teams are
working on different approaches to agent
learning (eg supervised fine-tuning as a
service). But it’s still unclear what the
right approach is.
Synthetic evals. Right now, writing evals
is an intense, human driven process.
Some products are synthetically
generating evals from tracing data, with
human approval, for specialized use
cases. We expect that to expand over the
next few months.
Security will become more important.
As I’m writing these words, I’m reading
about a vulnerability in the official
Github MCP server that will leak private
repos, API credentials, and so on.. The
number of deployed agents will probably
10x or 100x over the next few months, and
we’ll see more incidents like these.
The eternal September of AI will
continue. Every month brings new
developers who haven't learned how to
write good prompts or what a vector
database is. Meanwhile, the rapid pace of
model updates means even established
teams are constantly adapting their

Principles of Building AI Agents 133

implementations. In a field where the
ground shift constantly, we're all
perpetual beginners. To build something
enduring, you have to stay humble.

